Spin-label ESR with nanochannels to improve the study of backbone dynamics and structural conformations of polypeptides.

نویسندگان

  • Ya-Wen Huang
  • Yun-Wei Chiang
چکیده

Nanochannels of mesoporous silica materials were previously found useful for reducing the tumbling motion of encapsulated biomolecules while leaving the biomolecular structure undisturbed. Here we show that experiments of cw-ESR distance measurement in nano-confinement can benefit immediately from the above mentioned features of sufficiently slow molecular tumbling, enabling more accurate determination of interspin distances throughout the temperature range, from 200 to 300 K. A 26-residue prion protein peptide, which can fold into either a helical or hairpin structure, as well as its variants, are studied by using ESR. By comparing the spectra obtained in vitrified bulk solutions vs. mesopores, the spectra from the latter display typical slow-motional lineshapes, thereby enabling dipolar anisotropy to be unambiguously revealed throughout the temperature range, whereas the spectra from the former are dominated by the disordering of the side chain and the rotational tumbling of the peptide. The spectral changes regarding the two secondary structures in nano-confinement are found to show a strong correlation with the dynamic properties of the backbones. The effect of viscosity agent perturbation on the motion of an R1 nitroxide side chain, a commonly employed probe, could be substantial in a bulk solution condition, though it is absolutely absent in nanochannels. Under nano-confinement, the probe is proven sufficiently sensitive to the backbone motions. Overall, the distance distributions determined from the mesopore studies not only describe the conformational structures (by average distances), but also the backbone dynamics (by distribution widths) of the spin-labeled peptides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RosettaEPR: Rotamer Library for Spin Label Structure and Dynamics

An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL) into the protein modeling program Rosetta. Spin label ...

متن کامل

ESR Study of Interfacial Hydration Layers of Polypeptides in Water-Filled Nanochannels and in Vitrified Bulk Solvents

There is considerable evidence for the essential role of surface water in protein function and structure. However, it is unclear to what extent the hydration water and protein are coupled and interact with each other. Here, we show by ESR experiments (cw, DEER, ESEEM, and ESE techniques) with spin-labeling and nanoconfinement techniques that the vitrified hydration layers can be evidently recog...

متن کامل

Multifrequency electron spin resonance spectra of a spin-labeled protein calculated from molecular dynamics simulations.

Multifrequency electron spin resonance (ESR) spectra provide a wealth of structural and dynamic information about the local environment of the spin label and, indirectly, about the spin-labeled protein. Relating the features of the observed spectra to the underlying molecular motions and interactions is, however, challenging. To make progress toward a rigorous interpretation of ESR spectra, we ...

متن کامل

A multifrequency electron spin resonance study of T4 lysozyme dynamics.

Electron spin resonance (ESR) spectroscopy at 250 GHz and 9 GHz is utilized to study the dynamics and local structural ordering of a nitroxide-labeled enzyme, T4 lysozyme (EC 3.2.1.17), in aqueous solution from 10 degrees C to 35 degrees C. Two separate derivatives, labeled at sites 44 and 69, were analyzed. The 250-GHz ESR spectra are well described by a microscopic ordering with macroscopic d...

متن کامل

Using Markov models to simulate electron spin resonance spectra from molecular dynamics trajectories.

Simulating electron spin resonance (ESR) spectra directly from molecular dynamics simulations of a spin-labeled protein necessitates a large number (hundreds or thousands) of relatively long (hundreds of nanoseconds) trajectories. To meet this challenge, we explore the possibility of constructing accurate stochastic models of the spin label dynamics from atomistic trajectories. A systematic, tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 39  شماره 

صفحات  -

تاریخ انتشار 2011